У нас уже 176407 рефератов, курсовых и дипломных работ
Заказать диплом, курсовую, диссертацию


Быстрый переход к готовым работам

Мнение посетителей:

Понравилось
Не понравилось





Книга жалоб
и предложений


 






Название Синтез композиционных аффинных сорбентов с магнитными свойствами и их технологическое использование при изготовлении чумных иммунобиологических препаратов
Количество страниц 230
ВУЗ МГИУ
Год сдачи 2010
Бесплатно Скачать 25211.doc 
Содержание ГЛАВА 1. Обзор литературы

1.1. Синтез и исследование магнитосорбционных органокрем-неземных материалов с иммобилизованными биологически активными лигандами........................................................

1.2. Строение и свойства хитозана, как перспективного компонента для синтеза композиционных сорбентов, и медико-биологические аспекты его применения

1.3. Культивирование микроорганизмов с применением методов их иммобилизации на сорбентах

1.4. Применение магнитных иммуносорбентов для диагностики особо опасных инфекционных заболеваний и индикации их возбудителей

ГЛАВА 2. Материалы и методы

2.1 Характеристики используемых штаммов микроорганизмов

2.2. Характеристика лабораторных животных

2.3.Способы получения антигенов чумы, выделения специфических иммуноглобулинов, получения иммунопероксидазных коньюгатов и их контроль

2.4. Материалы для синтеза композиционных кремнеземных сорбентов и физико-химические методы их исследования

2.4.1. Химический анализ элементоксидных слоев сорбентов

2.4.2. Физико-химические методы исследования

2.5. Сублимация биопрепаратов

2.6. Статистическая обработка результатов исследования

ГЛАВА 3. Синтез композиционных магноиммуносорбентов и исследование их свойств

3.1. Синтез хитозанкремнеземных и элементосодержащих композиционных магносорбентов

3.2. Химическое модифицирование поверхности композиционных магносорбентов функциональными группами

3.3. Получение магноиммуносорбентов и иммобилизация специфических иммуноглобулинов на поверхности сорбента

ГЛАВА 4. Использование магнитоуправляемых иммобилизован-ных систем для глубинного культивирования вакцинного штамма чумного микроба

4.1.Глубинное культивирование чумного микроба, иммобилизованного на магнитных носителях

4.2.Изучение свойств чумной живой сухой вакцины, выращенной с помощью иммобилизованного инокулята

4.3. Получение капсульного антигена (Ф1) чумного микроба

ГЛАВА 5. Иммуноферментные тест-системы для диагностики чумы и индикации ее возбудителя Заключение Выводы

Список использованных источников Приложения

Перечень сокращений

Аг - антиген

Ат - антитело

БСА - бычий сывороточный альбумин

ДЭО - деструкционно-эпитаксиальное осаждение

ЗФР - забуференный физиологический раствор

ИФА - иммуноферментный анализ

Ig - иммуноглобулины

КИФА - количественный иммуноферментный анализ

КМИС - композиционные магноиммуносорбенты

КМС - композиционные магносорбенты

МИС - магноиммуносорбент

МКА - моноклональные антитела

МС - магносорбент

НРИФ - реакция непрямой иммунофлуоресценции

ПЦР - полимеразная цепная реакция

ПЭГ - полиэтиленглюколь

РНГА - реакция непрямой гемаггютинации

РА - реакция агглютинации

РИА - радиоиммунный анализ

РИД - реакция иммунодиффузии

РИФ - реакция иммунофлуоресценции

ФС - фармакопейная статья

ФСБ - фосфатно-солевой буфер

ФХКС - феррохитозанкремнеземный сорбент

ХЛИА - хемилюминесцентный иммунный анализ

ХКС - хитозанкремнеземный сорбент

ЭФСП - электрофорез в свободном потоке

Введение



ГЛАВА 1. Обзор литературы

1.1. Синтез и исследования магнитосорбционных органокремнеземных

материалов с иммобилизованными биологически активными лигандами

Контакт различных биообьектов окружающего мира с кремнеземами, его активное участие в жизненных процессах обосновывают определенный интерес для применения различных видов кремнеземов в биологии, медицине, сельском хозяйстве, биотехнологии (М.Г. Воронков, Г.И. Зельчан, Э.Я. Луковец, 1978; Р. Айлер, 1982; Г.Д. Лисичкин, 1989; А.В. Брыкалов, 1991; А.В. Брыкалов, 1993; А.В. Брыкалов, И.В. Жарникова, И.С. Тюменцева, 1995).

Me дико-биологические аспекты применения кремнеземов в качестве сорбентов с широким спектром действия, носителей для конструирования твердофазных диагностических тест-систем выдвигают задачи по детальному изучению химии их поверхности для выявления наиболее существенных факторов, которые определяют особенности иммобилизации биологических объектов на поверхности и влияют на их активность, а также поиска путей целенаправленного модифицирования полезных функций кремнеземов. С целью понимания характера взаимодействия поверхности сорбентов с активными биологическими веществами: антителами, антигенами, лекарственными препаратами, элементами крови, продуктами метаболизма, микроорганизмами необходима достоверная информация о строении поверхностного слоя кремнезема, его гидроксильных группах, природе активных центров поверхности, механизмах адсорбционных и хемосорбционных процессов, эффектах структурной перестройки их поверхности при внешних воздействиях.

В биотехнологии для получения иммобилизованных биологически активных веществ широко применяются различные виды кремнеземов, которые по сравнению с органическими носителями имеют известные преимущества (В.Б. Алесковский, 1976; В.Б. Алесковский, 1978; Г.Д. Лисичкин, 1989; Ф.Ходж, 1989).

2

Силикагель, аэросил, пористые стекла и силохромы относятся к сорбентам на основе кремнеземов.

Силикагель является продуктом поликонденсации ортокремневой кислоты, которая образуется из силиката натрия при его обработке водными растворами кислот (С.И. Кольцов, В.Б. Алесковский, 1953). Силикагель также получают в процессе гидролиза эфиров кремневой кислоты (В.Г.Березкин, В.П. Похомов, К.И. Сакадынский, 1975). С целью увеличения размера пор в структуре силикагеля его подвергают гидротермальной обработке в автоклаве при различных температурах и давлении водяного пара. Удельная поверхность и размеры частиц получаемых силикагелей зависят от рН, температуры, концентрации реагентов, режимов сушки и условий термической обработки. Силикагель имеет глобулярную структуру (А.П. Карнаухов, 1971) и таким образом представляет собой комплекс сферических частиц, от размера и плотности, упаковки которых зависит величина его удельной поверхности, объема пор и их размеров.

Аэросил - пирогенная форма двуокиси кремния. Его получают в результате высокотемпературного парофазного гидролиза четыреххлористого кремния в токе кислорода, с последующей конденсацией в парах воды (Н.К.Бебрис, А.В. Киселев, Ю.С. Никитин, 1967). Методом ядерного магнитного резонанса показано, что объемная фаза аэросила представлена в равной степени структурными мотивами кварца и кристобалита (Г.Д. Лисичкин, 1989).

Наибольшей химической однородностью с силикагелем, аэросилами обладают аэросилогели, получаемые спеканием частиц непористого высокодисперсного диоксида кремния - аэросила (А.В. Киселев, В.М. Лукьянович, Ю.С. Никитин, 1969; А.В. Киселев, В.И. Лыгин, 1972; Г.Д.Лисичкин, 1989.). Данные сорбенты имеют достаточно крупные поры. Проводя их термообработку, добиваются получения сорбентов с узким распределением пор по размерам.

3

В работе (К. Оккерс, 1973) представлены данные исследований непористого кремнезема - полисорба, глобулы которого, по мнению авторов, -это мелкие сферические частицы. По данным совмещенного ИК - спектрального и гравиметрического анализа, сделан вывод о преобладании на поверхности полисорба изолированных гидроксилов, сравнительно равномерно расположенных на расстоянии 0,6-0,7нм.

Пористые стекла - особая форма аморфного кремнезема. Образование пористых стекол является следствием химических и структурных превращений, происходящих в силикатных стеклах при взаимодействии с растворами кислот (В.М. Коликов, Б.В. Мчедлишвили, 1988). В результате выщелачивания щелочносиликатных стекол по такому механизму в продуктах образуются полости, размеры которых сопоставимы с размерами катионов, присутствующих в исходном стекле, а общий объем таких полостей находится в прямой зависимости от содержания щелочного оксида в стекле.

В работе авторов (И.К. Бебрис, А.В. Киселев, Ю.С. Никитин, 1967) предложен способ получения синтетических макропористых кремнеземов -силохромов, представляющих собой продукты гелеобразования водных суспензий аэросила. Данные адсорбенты без дополнительной гидротермальной обработки имеют крупные поры, однако распределение пор по размерам у них весьма широкое и с целью получения на их основе адсорбентов с узким распределением пор проводят термообработку при 1073- 1137 К. Поскольку силохромы, выпускаемые отечественной промышленностью, имеют развитую поверхность и размеры пор, которые достаточны для проникновения большинства биополимеров, то это и определяет целесообразность синтеза на их основе адсорбентов для аффинной хроматографии, носителей для твердофазных тест-систем.

Таким образом, широкий набор кремнеземов с регулируемыми структурными характеристиками позволяет подобрать материал для адсорбционных процессов, обеспечивающий оптимальную площадь контакта адсорбента с разделяемыми компонентами. Применяя однородномакропористые кремне-

4

земы, можно достичь одинаковой степени взаимодействия молекул сорбата со всей поверхностью адсорбента.

Для выяснения особенностей поверхностной структуры кремнеземов проведено большое число исследований (С.И. Кольцов, 1965; И.К. Бебриc, А.В. Киселев, Ю.С. Никитин, 1967; Б.Н. Ласкорин, В.В. Стрелко, Д.Н. Стра-жеско и др., 1977), что дало возможность получить ответы на важные вопросы, связанные со строением гидроксильных групп кремнеземов (А.В. Киселев, В.И. Лыгин, 1972; Б.Н. Ласкорин, В.В. Стрелко, Д.Н. Стражеско и др., 1977), их распределением (А.В. Киселев, В.И. Лыгин, 1972; В.А. Тертых, В.В. Павлов, И.К. Ткаченко, 1975) и активностью (С.И. Кольцов, 1965; А.В. Киселев, В.И. Лыгин, 1972; В.А. Тертых, В.В. Павлов, И.К. Ткаченко, 1975; Б.Н. Ласкорин, В.В. Стрелко, Д.Н. Стражеско и др., 1977). На поверхности кремнезема в различных соотношениях может находиться 5 видов групп: 1) свободные, отдельно стоящие - ОН группы; 2) физически связанная вода -молекулы воды, имеющие водородные связи с силанольными группами; 3) дегидратированные оксиды - силоксановые группы; 4) геминальные гидро-ксилы, связанные с одним атомом кремния; 5) вицинальные гидроксильные группы, связанные друг с другом водородной связью (Ю.П. Айлер, Е.В. Макарова, 1976).

Научно-практический интерес к изучению поверхностного слоя кремнеземов объясняется тем, что гидроксильные группы способны вступать в различные химические реакции, которые позволяют регулировать химическую природу поверхностных атомов, что приводит к получению адсорбентов заданного состава и строения.

Химические реакции на поверхности кремнеземов широко применяются для синтеза модифицированных адсорбентов.

В настоящее время на поверхности кремнеземов осуществлено большое число химических превращений, которые предложено разделить по механизму на два класса.

5

Выделяют большую группу реакций, относящихся к первому классу, протекающих с процессом замещения протона поверхностной силанольной группы такими электрофильными реагентами, как хлоралкоксисиланы, эле-ментоорганические соединения, галогениды металлов. На основании экспериментальных исследований воздействия различных алкилхлорсиланов с кремнеземом (С.И. Кольцов, Г.Н. Кузнецова, В.Б. Алесковский, 1967) установлено, что реакционная способность гидроксильных групп в реакциях электрофильного замещения протона определяется эффективным положительным зарядом на центральном атоме атакующей молекулы, а также величиной нуклеофиль-ного содействия со стороны уходящей группы.

Ко второму классу реакций с поверхностью кремнеземов относятся реакции нуклеофильного замещения гидроксильных групп и реакции нуклео-фильного присоединения при расщеплении связи у поверхностного кремния анионами галогенидов и спиртами. Как указано в работах (А.В. Киселев, В.И. Лыгин, 1972; В.А. Тертых, В.В. Павлов, К.И. Ткаченко, 1975), механизм нуклеофильного замещения включает стадию образования промежуточного циклического комплекса, последующее перераспределение связей в котором приводит к конечному продукту реакции. По мнению авторов (В.В. Стрелко, В.А. Каниболицкий, 1971), образование промежуточного комплекса энергетически выгодно, так как сводит к минимуму пространственное разделение зарядов при вытеснении уходящей группы.

Существуют химические реакции на поверхности кремнеземов, начальная стадия которых протекает по механизму электрофильного замещения протона в силанольной группе, а затем образующиеся соединения претерпевают перегруппировки, соответствующие процессу нуклеофильного замещения у атома кремния. К таким реакциям относят взаимодействие дисперсных кремнеземов с хлористым тионилом (В.В. Павлов, В.А. Тертых, А.А. Чуйко, 1976).

При взаимодействии гидроксильных групп с алкоксисиланами возможно протекание реакции конденсации с выделением спирта. Эксперименталь-

6

но подтверждено (А.А. Чуйко, Г.С. Павлик, 1963; W. Hertl, 1968) по исследованию кинетики и механизма реакции моно-, ди- и триметоксисиланов (W. Hertl, 1968), у - аминопропилтриэтоксисилана (В.А. Тертых, А.А. Чуйко, И.Е. Неймарк, 1965; И.Е. Неймарк, 1982) с кремнеземной поверхностью методом ИК-спектроскопии. Взаимодействие у - аминопропилтриэтоксисилана с поверхностью кремнезема в значительной мере зависит от условий среды, температуры реакции и структурных особенностей кремнеземного адсорбента. В работе (W.D. Bascom, R.V. Timons, 1972) было установлено, что адсорбированная поверхностью кремнезема вода (А.А.Чуйко, В.А. Тертых, Г.Е. Павлик, 1965; В.А. Тертых, А.А. Чуйко, А.А. Агзамходжаев, 1968; W.D. Bascom, R.V. Timons, 1972) способствует ускорению гидролиза молекул алкоксисила-нов, значительно усложняет процесс протекания реакции и приводит к полимеризации алкоксисиланов. В неводных растворах у - аминопропилтриэтоксисилана, а также при обработке его парами аэросила при 373-398 К в основном осуществляется химическая реакция с участием гидроксильных групп кремнезема.

Аминокремнеземы являются промежуточными продуктами для синтеза биоспецифических адсорбентов методом химической сборки. Для химического превращения аминогрупп, находящихся в поверхностном слое кремнезема, в альдегидные носители обрабатывают глутаровым альдегидом (С.В. Рогожин, В.Ю. Варламов, Д.Г. Вальковский, 1975).

Данный способ основан на способности аминогрупп образовывать с карбонильными соединениями азометиновые связи и отличается простотой. Однако, поскольку глутарового альдегида практически не существует в мономерном виде (P.I. Robinson, P. Dunmill, 1971; P. Monson, 1978), это приводит к неконтролируемости и ненаправленности синтеза в поверхностном слое кремнезема. Имеющиеся в составе адсорбента альдегидные группы способны вступать в химическую реакцию с аминогруппами селективных лигандов, макромолекул биополимеров, ферментов (Н.М. Самошин, Л.Т. Мотина, Л.И. Мере-щенко, 1978; А.П. Синицин, А.И. Клибанов, 1978).

7

Для синтеза поверхностных карбоксильных групп аминосодержащие кремнеземы обычно модифицируют ангидридами кислот (Р.А. Жакот, А.С. Корсакевич, 1977; А.П. Синицин, А.И. Клибанов, 1978).

Для активации аминосодержащих носителей используются производные галоидалкилов. Введенный на поверхность адсорбентов галоидалкил способен алкилировать молекулы белков по аминогруппам, имидазольному кольцу, фенильному гидроксилу и сульфгидрильным группам (В. Ульянсон, 1978). К такому же типу химического модифицирования аминокремнеземов следует отнести активирование их хлористым циануром (В.В. Янишпольский, В.А. Тертых, А.А. Чуйко, 1977; А.В. Богатский, Т.И. Доведенко, А.В. Чуенко, 1979).

Широкие синтетические возможности представляет использование кремнеземов, модифицированных эпоксигруппами. Сорбенты, полученные обработкой кремнезема Р - глицидоксипропилтриалкоксисиланами с последующей реакцией, способны раскрывать эпоксицикл. Эпоксицикл на поверхности кремнеземов в слабокислой среде легко превращается в гликоль. Этот сорбент и его производные находят широкое применение в хроматографии биополимеров в связи с отсутствием неспецифической адсорбции белков (Г.Д. Лисичкин, 1989).

К достоинствам метода ковалентного связывания кремнийорганиче-ских соединений на поверхности кремнеземов относится возможность получения полифункциональных соединений. Наиболее часто необходимость в таких адсорбентах возникает при выделении биополимеров, когда применение только одного варианта разделения (например, обращенофазового или ионообменного) не позволяет достичь требуемой селективности. Для решения поставленной задачи поверхность носителей модифицируют смесью кремнийор-ганических соединений и варьированием количества исходных компонентов, чем добиваются оптимальных вкладов «гидрофобного» и ионообменного взаимодействия в процессе разделения белков. Альтернативным способом варьирования вклада «гидрофобных» и ионообменных взаимодействий в хро-

8

матографическом разделении является изменение длины углеродной цепи носителя. Данный метод характеризуется большой воспроизводимостью, однако, необходимость специально синтезировать набор кремнийорганических модификаторов ограничивается его применением (Г.Д. Лисичкин, 1989).

Перспективным методом, позволяющим направлено изменять реакционную способность поверхности адсорбентов и получ
Список литературы
Цена, в рублях:

(при оплате в другой валюте, пересчет по курсу центрального банка на день оплаты)
1425
Скачать бесплатно 25211.doc 





Найти готовую работу


ЗАКАЗАТЬ

Обратная связь:


Связаться

Доставка любой диссертации из России и Украины



Ссылки:

Выполнение и продажа диссертаций, бесплатный каталог статей и авторефератов

Счетчики:

Besucherzahler
счетчик посещений

© 2006-2022. Все права защищены.
Выполнение уникальных качественных работ - от эссе и реферата до диссертации. Заказ готовых, сдававшихся ранее работ.