У нас уже 176407 рефератов, курсовых и дипломных работ
Заказать диплом, курсовую, диссертацию


Быстрый переход к готовым работам

Мнение посетителей:

Понравилось
Не понравилось





Книга жалоб
и предложений


 






Название ГЕНЕРАЦИЯ СДВИГОВЫХ ВОЛН И НАГРЕВАНИЕ ФАНТОМОВ БИОТКАНИ ИНТЕНСИВНЫМ ФОКУСИРОВАННЫМ УЛЬТРАЗВУКОМ
Количество страниц 111
ВУЗ МГИУ
Год сдачи 2010
Бесплатно Скачать 23205.doc 
Содержание Содержание
ВВЕДЕНИЕ...3

Глава 1. ОБЗОР ЛИТЕРАТУРЫ...16

§ 1.1. Тепловое воздействие ультразвука...16

§ 1.2. Визуализация медицинского состояния биологической ткани по

сдвиговому модулю...20

§ 1.3. Описание акустического поля фокусирующего источника...24

Глава 2. ВЛИЯНИЕ НЕЛИНЕЙНОСТИ СРЕДЫ НА ЭФФЕКТИВНОСТЬ УЛЬТРАЗВУКОВОГО НАГРЕВА...31

§2.1. Измерение и визуализация акустического нагрева. Экспериментальная установка...34

2.1.1. Измерение нагрева...34

2.1.2. Оптическая визуализация нагрева...37

§2.2. Измерение средней акустической мощности волны. Выбор режимов излучения...39

2.2.1. Экспериментальная установка...40

2.2.2. Режимы излучения. Формы акустической волны в фокусе излучателя...43

2.2.3. Зависимость средней акустической мощности фокусированного пучка

от расстояния...45

§2.3. Повышение эффективности нагрева среды нелинейным ультразвуковым

пучком: экспериментальные результаты...49

§2.4. Теоретическое описание акустического поля и поля температур...57

§2.5. Обсуждение результатов...61

§2.6. ВЫВОДЫ главы 2...63

Глава 3. ВЛИЯНИЕ НЕЛИНЕЙНОСТИ СРЕДЫ НА ЭФФЕКТИВНОСТЬ ГЕНЕРАЦИИ СДВИГОВЫХ ВОЛН ПРИ ПОГЛОЩЕНИИ УЛЬТРАЗВУКА...64

§ 3.1. Описание экспериментальной установки...67

§ 3.2. Описание экспериментальных исследований...68

§ 3.3. Теоретическое описание наблюдаемых эффектов...74

§ 3.4. ВЫВОДЫ главы 3...78
Глава 4. АКУСТИЧЕСКОЕ ПОЛЕ СИЛЬНО ФОКУСИРУЮЩЕГО ИСТОЧНИКА ПРИ УЧЕТЕ ДИФРАКЦИИ НА ВОГНУТОЙ ИЗЛУЧАЮЩЕЙ ПОВЕРХНОСТИ...80

§ 4.1. Описание метода сращиваемых разложений...81

§ 4.2. Численный расчет сферических функций Бесселя, Неймана и Ханкеля. .. 90

§ 4.3. Перенормировка сферических функций...92

§ 4.4. Результаты расчетов...93

§ 4.5. ВЫВОДЫ Главы 4...101

ЗАКЛЮЧЕНИЕ...102

Приложение 1. ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОГО ИМПЕДАНСА ПЬЕЗОКЕРАМИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ...104

Приложение 2. ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ПОГЛОЩЕНИЯ ЖЕЛАТИНА...108

ЛИТЕРАТУРА...111


ВВЕДЕНИЕ

Последние несколько десятков лет ультразвуковые методы, благодаря возможности сильной фокусировки и достижения высоких интенсивностей в локальной области пространства, получают все более широкое распространение в медицине [1]. Впервые воздействие интенсивных акустических волн на живые организмы было обнаружено Ланжевеном при испытании сонаров еще в 1917 году. Большое количество новейших разработок излучающих систем, создающих акустические поля различной пространственной конфигурации с очень широким диапазоном интенсивностей, позволяет применять ультразвуковое излучение как в целях диагностики, так и для терапии и даже хирургии мягких биологических тканей.

Применение акустических волн основано на нескольких физических явлениях, происходящих в среде при распространении звука, что схематически проиллюстрировано на рис. 1. По мере распространении энергия волны уменьшается, во-первых, за счет поглощения, что приводит к нагреву среды. В основном это используется в медицине в терапевтических и хирургических целях [1, 2, 3].

Во-вторых, энергия волны убывает за счет рассеяния, или иначе говоря, отражения от внутренних микро- и макронеоднородностей. Это явление применяется в дефектоскопии, гидролокации, а также в медицине для визуализации внутренних органов при диагностике заболеваний [4].

В-третьих, оба эти процесса сопровождаются передачей части импульса волны среде распространения, в результате происходит смещение одних слоев среды относительно других, что приводит в жидкостях и газах к образованию течений [5, 6], а в твердых и резиноподобных телах - к генерации волны сдвига [7, 8]. Большей частью это явление находит свое применение при исследованиях среды на наличие неоднородностей сдвигового модуля, в частности, в медицине, для ранней диагностики раковых образований в мягких тканях [9, 10, 11, 12].

В-четвертых, при распространении в биологических тканях ультразвук малой интенсивности воздействует на клетки живого организма, увеличивая
проводимость клеточных мембран (что используется для локализации химеотерапевтического воздействия или УЗ интенсификации транспорта лекарств [13, 14]), и при определенных условиях способствует повышению иммунитета (терапия раковых образований на кожных покровах [15]).

Кроме того, распространение мощной акустической волны часто сопровождается ростом и схлопыванием парогазовых пузырьков - явление кавитации. Это явление лежит в основе таких технологических процессов, как ультразвуковая очистка поверхностей материалов, диспергирование жидкостей,
доставка лекарств [16], является одним из механизмов разрушения почечных камней. Так же, кавитация в ряде случаев оказывается побочным эффектом и приводит к неблагоприятному воздействию на среду, например, неконтролируемым образом изменяет степень акустического нагрева биологической ткани, в некоторых случаях существенным образом деформируя и перемещая саму область нагрева [17]. При определенных условиях такой рост и схлопывание парогазовых пузырьков может даже привести к механическому разрушению мягких биологических тканей [18, 19].

Использование акустических волн в медицинских приложениях дало толчок к дальнейшему развитию нелинейной акустики, благодаря появлению и широкому применению фокусированных ультразвуковых пучков высокой интенсивности. Основные физические преимущества практического использования мощных акустических волн можно представить в двух аспектах.

Во-первых, это возможность создания сильно фокусированных пучков с очень высокой интенсивностью в фокальной области и, как следствие, обеспечение хорошей локализации обрабатываемой или исследуемой области пространства.

Во-вторых, преимуществом является то, что любая среда для акустических волн является в большей или меньшей степени нелинейной, степень проявления нелинейности зависит от частоты, амплитуды и формы волнового профиля. Это позволяет при определенных условиях расширять спектр участвующих в работе частот в область более высоких значений за счет генерации гармоник основной частоты в области пространства, где амплитуда волны велика, и поэтому особенно сильно проявляется эффект нелинейного взаимодействия.

В прикладной акустике это дает возможность повысить разрешающую способность акустических визуализирующих систем за счет приема высших гармоник основного сигнала, генерируемых в области больших амплитуд (как правило, это фокальная область излучающей системы) [20, 21, 22, 23, 24, 25], а также при необходимости позволяет локально управлять интенсивностью
процессов, таких как, например, кавитация или нагрев, который увеличивается за счет более эффективного поглощения высоких частот.

АКТУАЛЬНОСТЬ ПРОБЛЕМЫ

Перечисленные выше достоинства мощного ультразвука таят в себе определенные проблемы, связанные со сложностью описания акустических полей, а также с трудностями предсказания и контроля над процессами, происходящими в среде, когда нелинейность среды и дифракция оказываются существенными. Это особенно касается использования сильно фокусированных полей большой амплитуды [26]. Область нелинейной акустики является относительно молодой и развивается в основном благодаря двум прикладным направлениям: во-первых, это низкочастотные взрывные волны, ударные волны от воздушных судов, а во-вторых, это высокочастотные, мегагерцовые, ударные волны, применяемые в медицине. Область рассмотрения представляемой работы ограничивается исследованием физических аспектов медицинского приложения ультразвука к проблемам ранней диагностики и безоперационного лечения раковых заболеваний внутренних органов человека (см. рис. 1). Именно в этой области в настоящее время идет активный исследовательский процесс. Использование любого медицинского оборудования требует полного понимания всего спектра его возможного влияния на организм человека, как благоприятного, так и, в особенности, неблагоприятного. Ультразвуковое оборудование не является исключением. В связи с этим исследователями проводится огромная экспериментальная работа с целью получения эмпирических закономерностей процессов ультразвукового нагрева, акустической кавитации, локального кипения, предпринимаются всевозможные попытки поиска характерных особенностей этих процессов с целью разделения условий их проявления и результатов их действия. Параллельно ведутся теоретические исследования в направлении усовершенствования описания акустического и температурного полей, проводится изучение механизмов управления акустической кавитацией с целью снижения непредсказуемости разрушений, вызываемых динамикой парогазовых пузырьков при ультразвуковом нагреве биологических тканей.
Список литературы
Цена, в рублях:

(при оплате в другой валюте, пересчет по курсу центрального банка на день оплаты)
1425
Скачать бесплатно 23205.doc 





Найти готовую работу


ЗАКАЗАТЬ

Обратная связь:


Связаться

Доставка любой диссертации из России и Украины



Ссылки:

Выполнение и продажа диссертаций, бесплатный каталог статей и авторефератов

Счетчики:

Besucherzahler
счетчик посещений

© 2006-2022. Все права защищены.
Выполнение уникальных качественных работ - от эссе и реферата до диссертации. Заказ готовых, сдававшихся ранее работ.