Называется также теорией очередей и используется для решения задач оптимизации обслуживания. Рассматривает вероятные модели реальных систем обслуживания. Она используется для минимизации издержек в сфере обслуживания, в производстве, в торговле.
Теория массового обслуживания позволяет определить явные и неявные потери предприятия (общества в целом) при возникновении очередей.
Пример явных потерь – потери рабочего времени основного персонала при возникновении очереди на обслуживании (на проходной предприятия, при обеспечении необходимым инвентарем и т.д.). Расчет явных потерь имеет практическое значение в тех случаях, когда предприятие заинтересовано в увеличении объема продукции. Для определения таких потерь необходимо иметь информацию о значении следующих факторов:
- «цена» минуты рабочего времени основного персонала;
- потери рабочего времени в минутах;
- затраты на привлечение дополнительных работников обслуживания.
Определить цену единицы рабочего времени можно, зная трудоемкость единицы продукции и ее стоимость. Затраты на привлечение дополнительного персонала также несложно определить, представив их как сумму заработной платы работника. Сложнее определить средние потери рабочего времени в ожидании обслуживания. Для решения этой задачи необходимы хронометражные замеры о потоке требований на обслуживание в единицу времени.
Неявные потери состоят в «потерянных клиентах» при обслуживании, например, телефонистками. При этом предполагается, что при возникновении очереди клиент отказывается от обслуживания. При определении неявных потерь рассчитывается упущенная выгода – если известна так называемая «вероятность отказов», можно определить, какую сумму прибыли предприятие могло бы получить дополнительно, если увеличить количество обслуживающего персонала.
Существуют несколько моделей очередей в системах обслуживания. Широко применима простейшая из них одноканальная пуассоновская система с пуассоновским входящим потоком и бесконечным источником требований. В этой модели учитываются:
- средняя частота поступления требований, которая может быть получена по данным хронометража – А;
- средняя пропускная способность канала обслуживания, которая определяется как величина, обратная времени обслуживания – S.
Указанная модель включает в себя следующие характеристики и уравнения:
1. Коэффициент использования системы: A/S.
2. Среднее число клиентов в системе: A / (S-A).
3. Среднее число клиентов, ожидающих в очереди: A2 / [S*(S-A)].
4. Среднее время нахождения клиента в системе: 1 / (S-A).
5. Среднее время стояния в очереди: A / [S*(S-A)].
6. Удельный вес простоев: 1 – A / S.